

MANAV RACHNA INTERNATIONAL INSTITUTE OF RESEARCH & STUDIES

(Deemed to be University under section 3 of the UGC Act 1956)

Ph. D ADMISSION TEST (MR-PAT)

Ph.D. in Electrical and Electronics Engineering

Module 1: Electrical Circuits

- 1.1 KCL, KVL, Node and Mesh analysis
- 1.2 Thevenin's, Norton's, Superposition and Maximum Power Transfer theorem
- 1.3 Transient response of DC and AC networks
- 1.4 resonance, two port networks, balanced three phase circuits, star-delta transformation,
- 1.5 complex power and power factor in AC circuits.

Module 2: Electrical Machines

- 2.1 Single phase transformer, 3-Phase transformer: equivalent circuit, phasor diagram, open circuit and short circuit tests, regulation and efficiency
- 2.2 DC machines: separately excited, series and shunt, motoring and generating mode of operation and their characteristics, speed control of dc motors
- 2.3 Three-phase induction machines: principle of operation, types, performance, torque-speed characteristics, no-load and blocked-rotor tests, equivalent circuit, starting and speed control; Operating principle of single-phase induction motors
- 2.4 Synchronous machines: cylindrical and salient pole machines, performance and characteristics, regulation and parallel operation of generators

Module 3: Power Electronics

- 3.1 Thyristor, MOSFET, IGBT:V-I characteristics and firing/gating circuits
- 3.2 Buck, Boost and Buck-Boost Converters
- 3.3 Voltage and Current commutated Thyristor based converters
- 3.4 Bidirectional ac to dc voltage source converters
- 3.5 Single- phase and three-phase voltage and current source inverters, sinusoidal pulse width modulation

Module 4: Control Systems

- 4.1 Feedback principle, transfer function, Block diagrams and Signal flow graphs
- 4.2 Transient and Steady-state analysis of linear time invariant systems
- 4.3 Stability analysis using Routh-Hurwitz and Nyquist criteria
- 4.4 Bode plots, Root loci, Lag, Lead and Lead-Lag compensators
- 4.5 P, PI and PID controllers

Module 5: Analog and Digital Electronics

- 5.1 Diode circuits: clipping, clamping, rectifiers
- 5.2 Amplifiers: biasing, equivalent circuit and frequency responseTopic 3
- 5.3 Operational amplifiers: characteristics and applications
- 5.4 Active Filters: Sallen Key, Butterwoth, VCOs and timers
- 5.5 Combination and sequential logic circuits, multiplexers, demultiplexers, Schmitt triggers
- 5.6 A/D and D/A converters

Module 6: Measurements and Instrumentation

- 6.1 Bridges and Potentiometer
- 6.2 Measurement of voltage, current, power, energy and power factor
- 6.3 Instrument transformers, Digital voltmeters and multi-meters
- 6.4 Phase, Time and Frequency measurement
- 6.5 Oscilloscopes, Error analysis

Suggested Readings:

- 1. Transient Analysis Of Electric Power Circuits by Arieh L Shenkmann
- 2. Electrical Machinery by P.S Bimbhra
- 3. Power Systems Engineering by Nagrath and Kothari
- 4. Control Systems Engineering by Nagrath and Gopal
- 5. Electrical and Electronic Measurement and Instrumentation by AK Sawhney
- 6. Electronic Devices and Circuit Theory by Boylestad
- 7. Power Electronics by P. S. Bimbhra
- 8. Integrated Electronics: Analog And Digital Circuits And Systems by Christos C. Halkias, Chetan
- D. Parikh Jacob Millman